Does Cytoglobin Play a Role as Anti-Fibrosis?
DOI:
https://doi.org/10.55392/indarcbiores.v2i1.25Keywords:
Cytoglobin (Cygb), wound healing, anti-fibrosis, collagenAbstract
Cytoglobin (Cygb) is a vertebrate globin protein that is synthesized by fibroblasts and expressed in a variety of organs. Cygb’s function is not fully understood. In contrast, activated fibroblasts (myofibroblasts) are known to produce collagen, which is the major component of the extracellular matrix (ECM) and contributes to abnormal wound healing. There are three phases in wound healing: (1) injury; (2) inflammation; and (3) tissue regeneration. Myofibroblasts will apoptosis throughout the healing phase. If myofibroblasts fail to undergo apoptosis, this might end in fibrosis. This condition induces relative hypoxia in fibrosis. Several investigations have found that overexpression of Cygb serves as an antifibrosis agent by reducing collagen production. The potential involvement of Cygb in avoiding fibrosis in diverse tissues is discussed in this article.
Keywords: Cytoglobin (Cygb), wound healing, anti-fibrosis, collagen
Downloads
References
Nakatani K, Okuyama H, Shimahara Y, Saeki S, Kim D, Nakajima Y, et al. Cytoglobin/STAP, its unique localization in splanchnic fibroblast-like cells and function in organ fibrogenesis. Lab Invest. 2004: 84; 91–101
Burmester T, Ebner B, Weich B, Hankeln T. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol. 2002 Apr: 19(4); 416-21.
Darby IA, Laverdet B, Bonté F, Desmoulière A. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014: 7; 301–11.
Mathew-Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering (Basel). 2021 May; 8(5): 63.
Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012; 18: 1028-40.
Taunk NK, Haffty BG, Kostis JB, Goyal S. Radiation-induced heart disease: Pathologic abnormalities and putative mechanisms. Front Oncol. 2015; 5: 39.
McGarry T, Biniecka M, Veale DJ, Fearon U. Hypoxia, oxidative stress and inflammation. Free Radic Biol Med. 2018 Sep; 125: 15-24.
Jusman SW, Iswanti FC, Suyatna FD, Ferdinal F, Wanandi SI, Sadikin M. Cytoglobin expression in oxidative stressed liver during systemic chronic normobaric hypoxia and relation with HIF-1α. Med J Indones [Internet]. 2014Oct.15 [cited 2022Jan.9]; 23(3):133-8.
Hardiany N, Sucitra S, Paramita R. Profile of malondialdehyde (MDA) and catalase specific activity in plasma of elderly woman. Health Science Journal of Indonesia. 2020; 10(2):132-6.
Gilbane AJ, Denton CP, Holmes AM. Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells. Arthritis Res Ther. 2013; 15(3): 215.
Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012; 18: 1028-40.
Bochaton-Piallat ML, Gabbiani G, Hinz B. The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000Res. 2016 Apr 26;5: F1000 Faculty Rev-752. DOI: 10.12688/f1000research.8190.1. PMID: 27158462; PMCID: PMC4847562.
Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016; 12(6):p.325-38.
Watson CJ1, Collier P, Tea I, Neary R, Watson JA, Robinson C, et al. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet. 2014; 23(8):p.2176-88.
Jacob N, Targan SR, Shih DQ. Cytokine and anti-cytokine therapies in prevention or treatment of fibrosis in IBD. United European Gastroenterol J. 2016;4(4):p.531–4.
Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol. 2020 Jan; 16(1):11-31.
Wallace HA, Basehore BM, Zito PM. Wound healing phases [Internet]. Treasure Island: StatPearls Publishing; 2021[cited 2021 Sep 21]. Available from: https://pubmed.ncbi.nlm.nih.gov/29262065/.
Jankowich M, Choudhary G. Endothelin-1 levels and cardiovascular events. Trends Cardiovasc Med. 2020 Jan;30(1):1-8. doi: 10.1016/j.tcm.2019.01.007.
Melrose J. Glycosaminoglycan in wound healing. In: Bone and tissue regeneration insights. SagePub. 2016 Jan. doi:10.4137/BTRI.S38670
Santos-Ribeiro D, Medes-Ferreira P. Maia-Rocha C, Adão R, Leite-Moreira AF, Brás-Silva C. Pulmonary arterial hypertension: Basic knowledge for clinicians. Arch Cardiovasc Dis. 2016 Oct;109(10):550-561. doi: 10.1016/j.acvd.2016.03.004.
Barsotti N, Chiera M, Lanaro D, Fioranelli M. Impact of stress, immunity, and signal from endocrine and nervous system on fascia. Front Biosci (Elite Ed). 2021 Jan 1;13:1-36. DOI: 10.2741/870
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: A cellular perspective. Physion rev. 2019 Jan 1;999(1):665-706. DOI: 10.1152/physrev.00067.2017.
Yesudasan S, Averett RD. Multiscale network modeling of fibrin fibers and fibrin clot with protofibril binding mechanics. Polymers (Basel). 2020 May 27; 12(6):1223. DOI: 10.3390/polym12061223.
Chitturi RT, Balasubramanian AM, Parameswar RA, Kesavan G, Haris KTM, Mohideen K. The role of myofibroblasts in wound healing, contraction and its clinical implication in cleft palate repair. J Int Oral Health. 2015 Mar; 7(3): 75-80.
Tai Y, Woods EL, Dally J, Kong D, Steadman R, Moseley R, et al. Myofibroblast: Function, formation, and scope of molecular therapies for skin fibrosis. Biomolecules. 2021 Jul 23;11(8):1095. DOI: 10.3390/biom11081095
Shi-Wen Xu, Leask A, Abraham D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 2008 Apr; 19(2): 133-44.
Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H. The role of vascular endothelial growth factor in wound healing. J Surg Res. 2019 May 15; 153(2): 347-358.
Mathew-Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering (Basel). 2021 May; 8(5): 63.
Karakoyun B. The promising role of anti-fibrotic agent halofuginone in liver fibrosis/cirrhosis. In: Liver cirrhosis – Update and current challenges. London: InTechOpen; 2017:257-91.
Kawada N, Kristensen DB, Asahina K, Nakatani K, Minamiyama Y, Seki S, et al. Characterization of a stellate cell activation-associated protein (STAP) with peroxidase activity found in rat hepatic stellate cells. J Biol Chem. 2001; 276: 25318-23.
Trent JT, Hargrove MS. A ubiquitously expressed human hexacoordinate hemoglobin. J Biol Chem. 2002; 277: 19538-45.
Burmester T, Ebner B, Weich B, Hankeln T. Cytoglobin: A novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol. 2002; 19: 416–21.
Schmidt M, Gerlach F, Avivi A, Laufs T, Wystub S, Simpson JC, et al. Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia. J Biol Chem. 2004; 279: 8063–9.
Nakatani K, Okuyama H, Shimahara Y, Saeki S, Kim DH, Nakajima Y, et al. Cytoglobin/STAP, its unique localization in splanchnic fibroblast-like cells and function in organ fibrogenesis. Lab Invest. 2004; 84(1): 91-101.
Pesce A, Bolognesi M, Bocedi A, Ascenzi P, Dewilde S, Moens L, et al. Neuroglobin and cytoglobin: Fresh blood for the vertebrate globin family. EMBO Rep. 2002; 3(12): 1146-51.
Sawai H, Kawada N, Yoshizato K, Nakajima H, Aono S, Shiro Y. Characterization of the heme environmental structure of cytoglobin, a fourth globin in humans. Biochemistry. 2003; 42: 5133–42.
Sugimoto H, Makino M, Sawai H, Kawada N, Yoshizato K, Shiro Y. Structural basis of human cytoglobin for ligand binding. J Mol Biol. 2004; 339(4): 873-85.
Dewilde S, Kiger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, et al. Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J Biol Chem. 2001; 276: 38949-55.
Wu L, Sun Y, Li M, Li Y, Yao Y, Liu X, et al. Molecular cloning and 3D structure prediction of myoglobin and cytoglobin in Eurasian Tree Sparrow Passer montanus. J Ornithol. 2016; 157: 493–50.
Xu R, Harrison PM, Chen M, Li L, Tsui TY, Fung P, et al. Cytoglobin overexpression protects against damage-induced fibrosis. Mol Ther. 2006 Jun;13(6):1093-100.
Mimura I, Nangaku M, Nishi H, Inagi R, Tanaka R, Fujita T. Cytoglobin, a novel globin, plays an antifibrotic role in the kidney. AJP Renal. 2010: 299(5); 1120–33.
Sato-Matsubara M, Matsubara T, Daikoku A, Okina Y, Longato L, Rombouts K, Thuy LTT, Adachi J, Tomonaga T, Ikeda K, Yoshizato K, Pinzani M, Kawada N. Fibroblast growth factor 2 (FGF2) regulates cytoglobin expression and activation of human hepatic stellate cells via JNK signaling. J Biol Chem. 2017 Nov 17;292(46):18961-18972.
Wei H, Lin L, Zhang X, Feng Z, Wang Y, You Y, et al. Effect of cytoglobin overexpression on extracellular matrix component synthesis in human tenon fibroblasts. Biol Res. 2019 Apr 16;52(1):23.
Jusman SWA, Sari DH, Ningsih SS, Hardiany NS, Sadikin M. Role of Hypoxia Inducible Factor-1 Alpha (HIF-1α) in Cytoglobin Expression and Fibroblast Proliferation of Keloids. Kobe J Med Sci. 2019 May 22;65(1): E10-E18.
Jusman SWA, Azzizah IN, Sadikin M, Hardiany NS. Is the Mitochondrial Function of Keloid Fibroblasts Affected by Cytoglobin? Malays J Med Sci. 2021 Apr;28(2):39-47.
Thorne LS, Rochford G, Williams TD, Southam AD, Rodriguez-Blanco G, Dunn WB, Hodges NJ. Cytoglobin protects cancer cells from apoptosis by regulation of mitochondrial cardiolipin. Sci Rep. 2021 Jan 13;11(1):985.
Dat NQ, Thuy LTT, Hieu VN, Hai H, Hoang DV, Thi Than Hai N, et al. Hexa histidine-tagged recombinant human cytoglobin deactivates hepatic stellate cells and inhibits liver fibrosis by scavenging reactive oxygen species. Hepatology. 2021 Jun;73(6):2527-2545.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Indonesian Archives of Biomedical Research
This work is licensed under a Creative Commons Attribution 4.0 International License.