Neratinib a MST 1 inhibitor coated with Chitosan-alginate nanocarrier as a promising oral drug to inhibit pancreas cell apoptosis, stimulate insulin secretion, and restore Glycemia in type 1 Diabetes Mellitus

Authors

  • Nabila Anisa Harum Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Zumara Ma'rifah Azzahra Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Faizah Sugiarto Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Arifa Mustika Pharmacology Department, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia

DOI:

https://doi.org/10.55392/indarcbiores.v1i2.17

Keywords:

Chitosan-Alginate Nanocarrier, MST1 inhibitor, Neratinib, Type 1 Diabetes Mellitus

Abstract

Type 1 Diabetes Mellitus (T1DM) is a polygenic disorder in which autoimmunity destroys pancreatic beta cells, culminating in an absolute insulin secretion deficiency. Neratinib is an MST1 inhibitor to improve β-cell survival cells coated with alginate calcium nanocarrier encapsulated with chitosan that allows the retention of the packaged oral drug until it reaches specific target cells. This review aims to determine the potential of Neratinib as a Mammalian sterile 20-like kinase 1 Inhibitor, which is carried by nanocarrier chitosan-alginate as an alternative cutting edge oral drug for T1DM by preventing the apoptosis of beta cells.. Neratinib coated with chitosan-alginate nanocarrier and packaged in the form of an oral drug can be used as an advanced T1DM therapy. Future perspective needs further experimental and clinical trials to obtain concrete scientific evidence.

Downloads

Download data is not yet available.

References

Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet [Internet]. 2014;383(9911):69–82. Available from: http://dx.doi.org/10.1016/S0140- 6736(13)60591-7

Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective. Postgrad Med J. 2016;92(1084):63–9.

American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes. Diabetes Care. 2018;41(January): S13–27.

Dimeglio LA, Evans-Molina C, Oram RA. Type 1 Diabetes. Physiol Behav. 2018;176(5):139– 48.

International Diabetes Federation. Diabetes Atlas 9th Edition. 2019.

World Health Organisation. Global report on diabetes. Glob Rep Diabetes. 2016;88.

Maahs DM, West NA, Lawrence JM, Mayer- Davis EJ. Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am. 2010;39(3):481–97.

Mobasseri M, Shirmohammadi M, Amiri T, Vahed N, Fard HH, Ghojazadeh M. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis. Heal Promot Perspect. 2020;10(2):98–115.

Cameron FJ, Wherrett DK. Care of diabetes in children and adolescents: Controversies, changes, and consensus. Lancet [Internet]. 2015;385(9982):2096–106. Available from: http://dx.doi.org/10.1016/S0140- 6736(15)60971-0

Schwarz PE, Greaves CJ, Lindström J, Yates T, Davies MJ. Nonpharmacological interventions for the prevention of type 2 diabetes mellitus. Nat Rev Endocrinol [Internet]. 2012;8(6):363–73. Available from:http://dx.doi.org/10.1038/nrendo.2011.232

Lebovitz HE. Insulin: Potential negative consequences of early routine use in patients with type 2 diabetes. Diabetes Care.2011;34(SUPPL. 2).

Otto-Buczkowska E, Jainta N. Pharmacological treatment in diabetes mellitus type 1 - insulin and what else? Int J Endocrinol Metab. 2018;16(1):1–7.

Bellin MD, Barton FB, Heitman A, Alejandro R, Hering BJ. Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes. Am J Transplant [Internet]. 2012;23(1):1–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PM C3624763/pdf/nihms412728.pdf

Gruessner AC. 2011 Update on pancreas transplantation: comprehensive trend analysis of 25,000 cases followed up over the course of twenty-four years at the International Pancreas Transplant Registry (IPTR). Rev Diabet Stud. 2011;8(1):6–16.

Ardestani A, Li S, Annamalai K, Lupse B, Geravandi S, Dobrowolski A, et al. Neratinib protects pancreatic beta cells in diabetes. Nat Commun [Internet]. 2019;10(1):1–17. Available from: http://dx.doi.org/10.1038/s41467-019- 12880-5

Ardestani A, Maedler K. The Hippo signaling pathway in pancreatic β-cells: Functions and regulations. Endocr Rev. 2018;39(1):21–35.

Li X, Qi J, Xie Y, Zhang X, Hu S, Xu Y, et al. Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: Preparation, characterization, and hypoglycemic effect in rats. Int J Nanomedicine. 2012;8:23–32.

Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30(1):1–17.

Qin F, Tian J, Zhou D, Chen L. Mst1 and Mst2 kinases: Regulations and diseases. Cell Biosci [Internet]. 2013;3(1):1. Available from: Cell & Bioscience

Ardestani A, Paroni F, Azizi Z, Kaur S, Khobragade V, Yuan T, et al. MST1 is a key regulator of beta-cell apoptosis and dysfunction in diabetes. Nat Med [Internet]. 2014;20(4):385–97. Available from: http://dx.doi.org/10.1038/nm.3482

Deng Y, Wu A, Li P, Li G, Qin L, Song H, et al. Yap1 Regulates Multiple Steps of Chondrocyte Differentiation during Skeletal Development and Bone Repair. Cell Rep [Internet]. 2016;14(9):2224–37. Available from: http://dx.doi.org/10.1016/j.celrep.2016.02.021

Gao T, Mckenna B, Li C, Reichert M, Nguyen J, Singh T, et al. Pdx1 maintains β-cell identity and function by repressing an α- cell program. Cell Metab. 2014;19(2):259–71.

Martin M, Holmes FA, Ejlertsen B, Delaloge S, Moy B, Iwata H, et al. Neratinib after trastuzumab-based adjuvant therapy in HER2- positive breast cancer (ExteNET): 5-year analysis of a randomized, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(12):1688–700.

Puma Biotechnology. NERLYNX (neratinib) : HIGHLIGHTS OF PRESCRIBING INFORMATION [Internet]. Vol. 1. 2017. p. 433871. Available from:https://www.accessdata.fda.gov/drugsatfda_doc s/label/2017/208051s000lbl.pdf

Li J, Wu H, Jiang K, Liu Y, Yang L, Park HJ. Alginate Calcium Microbeads Containing Chitosan Nanoparticles for Controlled Insulin Release. Appl Biochem Biotechnol. 2020;

Spadari CC, Lopes LB, Ishida K. Potential Use of Alginate-Based Carriers As Antifungal Delivery System. Front Microbiol. 2017. 30;8:97. DOI: 10.3389/fmicb.2017.00097.

Sorasitthiyanukarn FN, Muangnoi C, Ratnatilaka Na Bhuket P, Rojsitthisak P, Rojsitthisak P. Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Mater Sci Eng C. 2018;93:178-190. doi:10.1016/j.msec.2018.07.069

Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R. International Journal of Biological Macromolecules pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol [Internet]. 2015;72:640–8. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2014.08.04 0

Szekalska M, Sosnowska K, Zakrzeska A, Kasacka I, Lewandowska A, Winnicka K. The Influence of Chitosan Cross-linking on the Properties of Alginate Microparticles with Metformin Hydrochloride-In Vitro and In Vivo Evaluation. Molecules. 2017 Jan 22;22(1):182. DOI: 10.3390/molecules22010182. PMID: 28117747; PMCID: PMC6155789.

Aleanizy FS, Alqahtani FY, Seto S, Al Khalil N, Aleshaiwi L, Alghamdi M, Alquadeib B, Alkahtani H, Aldarwesh A, Alqahtani QH, Abdelhady HG, Alsarra I. Trastuzumab Targeted Neratinib Loaded Poly-Amidoamine Dendrimer Nanocapsules for Breast Cancer Therapy. Int J Nanomedicine. 2020;15:5433- 5443.https://doi.org/10.2147/IJN.S256898

Published

2021-12-30

How to Cite

Anisa Harum, N. ., Azzahra, Z. M., Sugiarto, F., & Mustika, A. . (2021). Neratinib a MST 1 inhibitor coated with Chitosan-alginate nanocarrier as a promising oral drug to inhibit pancreas cell apoptosis, stimulate insulin secretion, and restore Glycemia in type 1 Diabetes Mellitus. Indonesian Archives of Biomedical Research, 1(2), 99–107. https://doi.org/10.55392/indarcbiores.v1i2.17