Biosensor development as an alternative test for Leptospirosis diagnosis: a systematic review
DOI:
https://doi.org/10.55392/indarcbiores.v1i2.22Keywords:
systematic review, leptospirosis, biosensor, diagnosisAbstract
Leptospirosis is a zoonotic disease caused by pathogenic bacteria from the genus Leptospira that can attack livestock, wild animals, and humans. The diagnosis of leptospirosis is currently carried out by Leptospira culture, Microscopic Agglutination Test (MAT), Enzyme Linkage Immunosorbent Assay (ELISA), and Polymerase Chain Reaction (PCR). This test requires a specific laboratory, long test time, experienced personnel, a lot of equipment and is expensive and difficult to apply in the field. Biosensor technology is a necessary method of disease diagnosis to detect biomolecules such as protein and bacteria biomarkers. The purpose of this article is to provide information on the development of biosensors as an alternative test for the diagnosis of leptospirosis. The method used is a systematic review using the PRISMA protocol. The results showed that the electrochemical biosensor with monoclonal anti-LipL32 and ssDNA probe specific to the LipL32 gene of Leptospira had advantages for leptospirosis diagnosis because it was cheap, accurate, portable, small test equipment, and capable of detecting leptospirosis. Optical biosensors (specifically lateral flow systems, magnetogenosensors and paper fluidic devices) can detect Leptospira bacteria with sensitive, specific, easy manipulation, and users can get fast visual test results within minutes. This biosensor technology can be used as a promising alternative diagnostic method for the diagnosis of leptospirosis with simplicity, high sensitivity, fast detection time, low cost, and portable so that it is easy to apply in the field.
Downloads
References
Afzal A, Mujahid A, Schirhagl R, Bajwa SZ, Latif U, Feroz S. 2017. Gravimetric viral diagnostics: QCM based biosensors for early detection of viruses. Chemosensors. 5:1–25.
Aquino A, Conte-Junior CA. 2020. A Systematic Review of Food Allergy: Nanobiosensor and Food Allergen Detection. Biosensors. 10:1–19.
Baluta S, Lesiak A, Cabaj J. 2018. Graphene Quantum Dots-based Electrochemical Biosensor for Catecholamine Neurotransmitters Detection. Electroanalysis. 30:1773–1782.
Becherer L, Borst N, Bakheit M, Frischmann S, Zengerle R, Von Stetten F. 2020. Loop-mediated isothermal amplification (LAMP)-review and classification of methods for sequence-specific detection. Anal Methods. 12:717–746.
Budihal SV, Perwez K. 2014. Leptospirosis diagnosis: Competancy of various laboratory tests. J Clin Diagnostic Res. 8:199–202.
Campuzano S, Torrente-Rodríguez RM, Lõpez-Hernández E, Conzuelo F, Granados R, Sánchez-Puelles JM, Pingarrõn JM. 2014. Magnetobiosensors based on viral protein p19 for microrna determination in cancer cells and tissues. Angew Chemie - Int Ed. 53:6168–6171.
Chen Liu XC. 2015. EDC-Mediated Oligonucleotide Immobilization on a Long Period Grating Optical Biosensor. J Biosens Bioelectron. 06.
Du X, Zhou J. 2018. Application of biosensors to detection of epidemic diseases in animals. Res Vet Sci [Internet]. 118:444–448. Available from: https://doi.org/10.1016/j.rvsc.2018.04.011
Feng N, Zhou Yazhou, Fan Y, Bi Y, Yang R, Zhou Yusen, Wang X. 2018. Yersinia pestis detection by loop-mediated isothermal amplification combined with magnetic bead capture of DNA. Brazilian J Microbiol. 49:128–137.
Ghaffari-Moghaddam M, Eslahi H. 2014. Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arab J Chem. 7:846–855.
Holzinger M, Goff A Le, Cosnier S. 2014. Nanomaterials for biosensing applications : a review. 2:1–10.
Hsu YH, Chou SJ, Chang CC, Pan MJ, Yang WC, Lin CF, Chan KW. 2017. Development and validation of a new loop-mediated isothermal amplification for detection of pathogenic Leptospira species in clinical materials. J Microbiol Methods [Internet]. 141:55–59. Available from: http://dx.doi.org/10.1016/j.mimet.2017.07.010
Huang Y, Xu J, Liu J, Wang X, Chen B. 2017. Disease-related detection with electrochemical biosensors: A review. Sensors (Switzerland). 17:1–31.
Hussain NHI, Mustafa MK, Asman S. 2018. Synthesis of PANI/Iron (II, III) Oxide Hybrid Nanocomposites Using SolGel Method. J Sci Technol. 10:2021.
J B, Chanda K, Balamurali MM. 2018. Biosensors for pathogen surveillance. Environ Chem Lett [Internet]. 16:1325–1337. Available from: https://doi.org/10.1007/s10311-018-0759-y
Jampasa S, Lae-ngee P, Patarakul K, Ngamrojanavanich N, Chailapakul O, Rodthongkum N. 2019a. Electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for leptospirosis diagnosis. Biosens Bioelectron [Internet]. 142:111539. Available from: https://doi.org/10.1016/j.bios.2019.111539
Jampasa S, Lae-ngee P, Patarakul K, Ngamrojanavanich N, Chailapakul O, Rodthongkum N. 2019b. Electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for leptospirosis diagnosis. Biosens Bioelectron [Internet]. 142:111539. Available from: https://doi.org/10.1016/j.bios.2019.111539
Jurait J, Abdullah H, Bejo SK, Yahya I. 2018. nanocomposite thin films for identification of pathogenic Leptospira. :1515–1528.
Jurait J, Abdullah H, Yahya I, Bejo SK, Azman NJ. 2019. Impedimetric Sensor of Leptospira Bacteria Based on Mixed Metal Alloys - Polyaniline Films. :43–48.
Jurait J, Abdullah H, Yahya I, Bejo SK, Azman NJ. 2020a. Characterization of expeditious Leptospira bacteria detection using PANI–Fe–Ni nanocomposite thin film. Polym Bull. 77:3969–3987.
Jurait J, Abdullah H, Yahya I, Bejo SK, Azman NJ. 2020b. Characterization of expeditious Leptospira bacteria detection using PANI–Fe–Ni nanocomposite thin film. Polym Bull [Internet]. 77:3969–3987. Available from: https://doi.org/10.1007/s00289-019-02949-y
Karuwan C, Wisitsoraat A, Chaisuwan P, Nacapricha D, Tuantranont A. 2017. Screen-printed graphene-based electrochemical sensors for a microfluidic device. Anal Methods. 9:3689–3695.
Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. 2019. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 9:8778–8781.
Li S, Liu Y, Chen X, Wang M, Hu W, Yan J. 2019. Visual and Rapid Detection of Leptospira interrogans Using Multiple Cross-Displacement Amplification Coupled with Nanoparticle-Based Lateral Flow Biosensor. Vector-Borne Zoonotic Dis. 19:604–612.
Manuscript A. 2019. Materials Chemistry B.
Menezes BRC De, Rodrigues KF, Fonseca BCDS, Ribas RG, Montanheiro TLDA, Thim GP. 2019. Recent advances in the use of carbon nanotubes as smart biomaterials. J Mater Chem B. 7:1343–1360.
Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, Atkins D, Barbour V, Barrowman N, Berlin JA, et al. 2009. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 6.
Molina J, Cases F, Moretto LM. 2016. Graphene-based materials for the electrochemical determination of hazardous ions. Anal Chim Acta [Internet]. 946:9–39. Available from: http://dx.doi.org/10.1016/j.aca.2016.10.019
Nag A, Mitra A, Mukhopadhyay SC. 2018. Graphene and its sensor-based applications: A review. Sensors Actuators, A Phys [Internet]. 270:177–194. Available from: http://dx.doi.org/10.1016/j.sna.2017.12.028
Nagraik R, Kaushal A, Gupta S, Dhar P, Sethi S, Kumar D. 2019. Optimized DNA-based bioassay for Leptospira interrogans detection: a novel platform for leptospirosis diagnosis. 3 Biotech. 9:3–9.
Nagraik R, Kaushal A, Gupta S, Sethi S, Sharma A, Kumar D. 2020. Nanofabricated versatile electrochemical sensor for Leptospira interrogans detection. J Biosci Bioeng [Internet]. 129:441–446. Available from: https://doi.org/10.1016/j.jbiosc.2019.11.003
Nurul Najian AB, Engku Nur Syafirah EAR, Ismail N, Mohamed M, Yean CY. 2016. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira. Anal Chim Acta. 903:142–148.
Nurul Najian AB, Foo PC, Ismail N, Kim-Fatt L, Yean CY. 2019. Probe-specific loop-mediated isothermal amplification magnetogenosensor assay for rapid and specific detection of pathogenic Leptospira. Mol Cell Probes [Internet]. 44:63–68. Available from: https://doi.org/10.1016/j.mcp.2019.03.001
Perumal V, Hashim U. 2013. ScienceDirect Advances in biosensors : Principle , architecture and. J Econ Financ Adm Sci [Internet]. 12:1–15. Available from: http://dx.doi.org/10.1016/j.jab.2013.02.001
Qiao Z, Fu Y, Lei C, Li Y. 2020. Advances in antimicrobial peptides-based biosensing methods for detection of foodborne pathogens: A review. Food Control [Internet]. 112:107116. Available from: https://doi.org/10.1016/j.foodcont.2020.107116
Qiu Q, Chen H, Ying S, Sharif S, You Z, Wang Y, Ying Y. 2019. Simultaneous fluorometric determination of the DNAs of Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus by using an ultrathin metal-organic framework (type Cu-TCPP). Microchim Acta. 186.
Raikwar S, Prajapati YK, Srivastava DK, Maurya JB, Saini JP. 2020. Detection of Leptospirosis Bacteria in Rodent Urine by Surface Plasmon Resonance Sensor Using Graphene. Photonic Sensors.
Russell CD, Jones ME, O’Shea DT, Simpson KJ, Mitchell A, Laurenson IF. 2018. Challenges in the diagnosis of leptospirosis outwith endemic settings: A scottish single centre experience. J R Coll Physicians Edinb. 48:9–15.
Sapna K, Tarique M, Asiamma A, Ravi Kumar TN, Shashidhar V, Arun AB, Prasad KS. 2020. Early detection of leptospirosis using Anti-LipL32 carbon nanotube immunofluorescence probe. J Biosci Bioeng [Internet]. 130:424–430. Available from: https://doi.org/10.1016/j.jbiosc.2020.06.002
Saylan Y, Erdem Ö, Ünal S, Denizli A. 2019. An alternative medical diagnosis method: Biosensors for virus detection. Biosensors. 9.
Seok Y, Joung HA, Byun JY, Jeon HS, Shin SJ, Kim S, Shin YB, Han HS, Kim MG. 2017. A paper-based device for performing loop-mediated isothermal amplification with real-time simultaneous detection of multiple DNA targets. Theranostics. 7:2220–2230.
Shafiee A, Ghadiri E, Kassis J, Pourhabibi Zarandi N, Atala A. 2018. Biosensing Technologies for Medical Applications, Manufacturing, and Regenerative Medicine. Curr Stem Cell Reports. 4:105–115.
Su H, Li S, Jin Y, Xian Z, Yang D, Zhou W, Mangaran F, Leung F, Sithamparanathan G, Kerman K. 2017. Nanomaterial-based biosensors for biological detections. Adv Heal Care Technol. Volume 3:19–29.
Tavakoli H, Zhou W, Ma L, Guo Q, Li X. 2020. Paper and Paper Hybrid Microfluidic Devices for Point‐of‐care Detection of Infectious Diseases. Nanotechnol Microfluid.:177–209.
Varsha V, Aishwarya S, Murchana S, Naveen G, Ramya M, Rathinasabapathi P. 2020. Correction pen based paper fluidic device for the detection of multiple gene targets of Leptospira using Loop Mediated Isothermal Amplification. J Microbiol Methods [Internet]. 174:105962. Available from: https://doi.org/10.1016/j.mimet.2020.105962
Vidic J, Manzano M, Chang CM, Jaffrezic-Renault N. 2017. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res. 48:1–23.
Wandemur G, Rodrigues D, Allil R, Queiroz V, Peixoto R, Werneck M, Miguel M. 2014. Plastic optical fiber-based biosensor platform for rapid cell detection. Biosens Bioelectron [Internet]. 54:661–666. Available from: http://dx.doi.org/10.1016/j.bios.2013.11.030
Welch NG, Scoble JA, Muir BW, Pigram PJ. 2017. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases [Internet]. 12:02D301. Available from: http://dx.doi.org/10.1116/1.4978435
Xie KX, Jia SS, Zhang JH, Wang H, Wang Q. 2019. Amplified fluorescence by carbon nanotube (CNT)-Assisted surface plasmon coupled emission (SPCE) and its biosensing application. New J Chem. 43:14220–14223.
Zainuddin NH, Chee HY, Ahmad MZ, Mahdi MA, Abu Bakar MH, Yaacob MH. 2018a. Sensitive Leptospira DNA detection using tapered optical fiber sensor. J Biophotonics. 11.
Zainuddin NH, Chee HY, Ahmad MZ, Mahdi MA, Abu Bakar MH, Yaacob MH. 2018b. Sensitive Leptospira DNA detection using tapered optical fiber sensor. J Biophotonics. 11.
Zainuddin NH, Chee HY, Ahmad MZ, Mahdi MA, Abu Bakar MH, Yaacob MH. 2018c. Sensitive Leptospira DNA detection using tapered optical fiber sensor. J Biophotonics. 11:1–12.
Zhao F, Niu L, Yan L, Nong J, Wang C, Wang J, Gao N, Zhu X, Wu L, Zheng F, Hu S. 2019. Establishment and application of multiple cross displacement amplification coupled with lateral flow biosensor (MCDA-LFB) for visual and rapid detection of Candida albicansin clinical samples. Front Cell Infect Microbiol. 9:1–9.
Zheng F, Wang P, Du Q, Chen Y, Liu N. 2019. Simultaneous and ultrasensitive detection of foodborne bacteria by gold nanoparticles-amplified microcantilever array biosensor. Front Chem. 7.
Zhylkibayev A, Akishev Z, Khassenov B, Sarina N, Ramankulov Y, Mukanov K, Eskendirova S. 2018. Obtaining and characterization of a recombinant LipL32 protein for detection of leptospirosis. Trop Biomed. 35:280–287.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Indonesian Archives of Biomedical Research

This work is licensed under a Creative Commons Attribution 4.0 International License.