Smoking habit affects the qualities of stored leukodepleted red blood cells

Authors

  • Aulia Eka Sari Sari Universitas Indonesia
  • Mohammad Sadikin Departement of Biochemistry & Molecular Biology, Medical Faculty, Universitas Indonesia, Jakarta, Indonesia; Center of Hypoxia and Oxicative Stress Studies, Dept of Biochemistry and Molecular Biology Medical Faculty Universitas Indonesia, Jakarta Indonesia
  • Ni Ken Ritchie Jakarta Blood Transfusion Unit, Indonesian Red Cross, Jakarta, Indonesia

DOI:

https://doi.org/10.55392/indarcbiores.v1i2.9

Keywords:

Methemoglobin, Glutathione, G6PD, smoking, storage blood

Abstract

Background: Pack Red Cell (PRC) is one of the most widely used blood products. Indonesia has a high number of smokers who are potential donors. Smoking is a habit that can cause radicals, triggers oxidative stress so that transfusion becomes ineffective.

Objective: This study aimed to determine the relationship between smoking habits and methemoglobin, glutathione, and glucose 6 phosphate dehydrogenase (G6PD) in leukodepleted PRC (PRC-LD) blood bags during storage.

Methods: PRC-LD from the Jakarta Red Cross Transfusion Unit were grouped into non-smoker donors (NP), light smoker donors (PR), and moderate smoking donors (PS).  Analysis for methemoglobin, glutathione, and G6PD was performed on days 0, 14, 21, and 35h. The analysis was done spectrophotometrically.

Results:  Statistical analysis indicates that methemoglobin was increased on days 21 and 35, glutathione levels decreased progressively on days 0, 14, 21, and 35. The G6PD activities decreased markedly on day 35 in all groups. A significant relationship was found between methemoglobin and glutathione, as well as G6PD and glutathione.

Conclusion: Smoking habits make the storage blood condition worse

Downloads

Download data is not yet available.

Author Biography

Ni Ken Ritchie, Jakarta Blood Transfusion Unit, Indonesian Red Cross, Jakarta, Indonesia

 

 

References

Kamilah D, Widyaningrum D. Hubungan jenis packed red cell (PRC) yang ditransfusikan dengan reaksi transfusi febrile non haemolytic transfusion reaction (FNHTR). Intisari Sains Medis. 2019;10(1):227-231. doi:10.15562/ism.v10i1.348

Brecher ME. Technical Manual.; 2005.

Wahidiyat PA, Adnani NB. Transfusi Rasional pada Anak. Sari Pediatr. 2017;18(4):325. doi:10.14238/sp18.4.2016.325-31

Wongsari MH, Muhiddin R, Arif M. Glucose Level Analysis on Stored Packed Red Cells. Indones J Clin Pathol Med Lab. 2018;24(2):117. doi:10.24293/ijcpml.v24i2.1308

Wahyu R, Nurulita A, Muhidin R. Analysis of Lactic and Hematocrit Levels of Blood Storage in Dr. Wahidin Sudirohusodo General Hospital Blood Bank. Indones J Clin Pathol Med Lab. 2019;25(3):318. doi:10.24293/ijcpml.v25i3.1450

Lestari AAW, Triyono T, Sukoroni U. Quality of Stored Red Blood. Indones J Clin Pathol Med Lab. 2017;23:294-302. http://journal.unair.ac.id/download-fullpapers-IJCPML-12-3-08.pdf.

Alessandro AD, Fu X, Kanias T, Reisz JA, Hill RC, Guo Y, et al. Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity. Haematologica. 2021;106(5).

Stefanoni D, Fu X, Reisz JA, Kanias T, Nemkov T, Page GP, et al. Nicotine exposure increases markers of oxidant stress in stored red blood cells from healthy donor volunteers. Transfusion. 2020;60(6):1160-1174. doi:10.1111/trf.15812

Pryor WA. Cigarette smoke and the involvement of free radical reactions in chemical carcinogenesis. Br J Cancer. 1987;55(SUPPL. 8):19-23.

Church DF, Pryor WA. Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect. 1985;VOL. 64:111-126. doi:10.1289/ehp.8564111

Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 2014;5 FEB(February):1-6. doi:10.3389/fphys.2014.00084

Bocedi A, Fabrini R, Lai O, Alfieri L, Roncoroni C, Noce A, et al. Erythrocyte glutathione transferase: A general probe for chemical contaminations in mammals. Cell Death Discov. 2016;2(1). doi:10.1038/cddiscovery.2016.29

Kasapoglu M, Özben T. Alterations of antioxidant enzymes and oxidative stress markers in aging. Exp Gerontol. 2001;36(2):209-220. doi:10.1016/S0531-5565(00)00198-4

Bardyn M, Tissot JD, Prudent M. Oxidative stress and antioxidant defenses during blood processing and storage of erythrocyte concentrates. Transfus Clin Biol. 2018;25(1):96-100. doi:10.1016/j.tracli.2017.08.001

Boehm RE, Do Nascimento SN, Cohen CR, Bandiera S, Pulcinelli RR, Balsan AM, S et al. Cigarette smoking and antioxidant defences in packed red blood cells prior to storage. Blood Transfus. 2019:1-8. doi:10.2450/2019.0166-19

Arnaud F, Higgins A, McCarron R, Moon-Massat PF. Determination of methemoglobin and hemoglobin levels in small volume samples. Artif Cells, Nanomedicine Biotechnol. 2017;45(1):58-62. doi:10.3109/21691401.2016.1138490

Ellman GL. Tissue Sulfydryl Groups. Arch Biochem Biophys. 1959;82(1):70-77.

Shein M, Jeschke G. Comparison of Free Radical Levels in the Aerosol from Conventional Cigarettes, Electronic Cigarettes, and Heat-Not-Burn Tobacco Products. Chem Res Toxicol. 2019;32(6):1289-1298. doi:10.1021/acs.chemrestox.9b00085

Rodwell VW, Bender DA, Botham KM, Kennelly PJ, Weil PA. Harpers Illustrated Biochemistry. In: 30th ed. Jakarta: EGC; 2017:331-332.

Uchida I, Tashiro C, Koo YH, Mashimo T, Yoshiya I. Carboxyhemoglobin and methemoglobin levels in banked blood. J Clin Anesth. 1990;2(2):86-90. doi:10.1016/0952-8180(90)90059-C

Gumustekin K, Ciftci M, Coban A, Altikat S, Aktas O, Gul M, et al. Effects of nicotine and vitamin E on glucose 6-phosphate dehydrogenase activity in some rat tissues in vivo and in vitro. J Enzyme Inhib Med Chem. 2005;20(5):497-502. doi:10.1080/14756360500277384

Chikezie PC. Methaemoglobin Content and NADH-methaemoglobin Reductase Activity of Three Human Erythrocyte Genotypes. Asian J Biochem. 2011;6(1):98-103. doi:10.3923/ajb.2011.98.103

Irawati L, Irahmah M, Fisika B, Fakultas K, Universitas K. Hubungan jumlah dan lamanya merokok dengan viskositas darah. 2011:137-146.

Almac E, Bezemer R, Hilarius-Stokman PM, Goedhart P, Korte DD, Verhoeven AJ,et al. Red blood cell storage increases hypoxia-induced nitric oxide bioavailability and methemoglobin formation in vitro and in vivo. Transfusion. 2014;54(12):3178-3185. doi:10.1111/trf.12738

Symvoulakis EK, Vardavas CI, Fountouli P, Stavroulaki A, Antoniou KM, Duijker G, et al. Time interval from cigarette smoke exposure to blood donation and markers of inflammation: Should a smoking cut-off be designated. Xenobiotica. 2010;40(9):613-620. doi:10.3109/00498254.2010.500745

Peters AL, Van Bruggen R, De Korte D, Van Noorden CJF, Vlaar APJ. Glucose-6-phosphate dehydrogenase activity decreases during storage of leukoreduced red blood cells. Transfusion. 2016;56(2):427-432. doi:10.1111/trf.13378

Bolzán AD, Bianchi MS, Bianchi NO. Superoxide dismutase, catalase and glutathione peroxidase activities in human blood: Influence of sex, age and cigarette smoking. Clin Biochem. 1997;30(6):449-454. doi:10.1016/S0009-9120(97)00047-7

Ghezelbash B, Azarkeivan A, Pourfathollah AA, Deyhim M, Hajati E, Goodarzi A. Comparative evaluation of biochemical and hematological parameters of pre-storage leukoreduction during RBC storage. Int J Hematol Stem Cell Res. 2018;12(1):35-42.

Hoffbrand AV, Moss PAH. Hoffbrands Essential Haematology. 7th ed. Wilay Blackwell; 2016.

Ley B, Bancone G, Von Seidlein L, Thriemer K, Richards JS, Domingo GJ, et al. Methods for the field evaluation of quantitative G6PD diagnostics: A review. Malar J. 2017;16(1):1-9. doi:10.1186/s12936-017-2017-3

Gong Z hua, Tian G li, Huang Q wei, Wang Y min, Xu H ping. Reduced glutathione and glutathione disulfide in the blood of glucose-6-phosphate dehydrogenase-deficient newborns. BMC Pediatr. 2017;17(1):4-9. doi:10.1186/s12887-017-0920-y

Published

2021-12-30

How to Cite

Sari, A. E. S., Sadikin, M. ., & Ritchie, N. K. (2021). Smoking habit affects the qualities of stored leukodepleted red blood cells. Indonesian Archives of Biomedical Research, 1(2), 65–76. https://doi.org/10.55392/indarcbiores.v1i2.9