Biofilm forming potential of Streptococcus suis: focusing on luxs/ai-2-mediated quorum sensing system

Authors

  • Tjokorda Istri Pramitasuri Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Udayana, Bali, 80232,
  • Ni Made Adi Tarini Department of Microbiology, Faculty of Medicine-Rumah Sakit Umum Pusat Sanglah, Bali, 80232,
  • Ni Made Susilawathi Department of Neurology, Faculty of Medicine-Rumah Sakit Universitas Udayana, Bali, 80361, Indonesia
  • Anak Agung Raka Sudewi Department of Neurology, Faculty of Medicine-Rumah Sakit Universitas Udayana, Bali, 80361, Indonesia

DOI:

https://doi.org/10.55392/indarcbiores.v1i1.6

Keywords:

Streptococcus suis, biofilm, Quorum Sensing, LuxS, Auto Inducer-2

Abstract

Because of its virulence and ability to survive, the incidence of infection caused by Streptococcus suis (S. suis), an emerging zoonotic pathogen, is expected to increase significantly. A biofilm-forming process, which is a cornerstone of chronic infection, influences the survival rate of S. suis. The mechanism helps bacteria to live longer in host tissues, form colonies, escape immune clearance, and share genetic information. At this moment, the most studied regulatory mechanism of S. suis biofilm formation is Quorum Sensing (QS), mainly on LuxS/AI-2-mediated QS system, in which AI-2 is the most closely related molecule to biofilm formation. In this system, LuxS acts as the key player in the process. The understanding of biofilm formation in S. suis, especially the LuxS/AI-2-mediated QS system, is a valuable contribution to future therapeutic research frameworks.

Downloads

Download data is not yet available.

References

Feng Y, Zhang H, Wu Z, Wang S, Cao M, Hu D, et al. Streptococcus suis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence. 2014;5(4):477-97.

Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett. 2016;590(21):3772-99.

Dutkiewicz J, Sroka J, Zajac V, Wasinski B, Cisak E, Sawczyn A, et al. Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part I - Epidemiology. Ann Agric Environ Med. 2017;24(4):683-95.

Susilawathi NM, Tarini NMA, Fatmawati NND, Mayura PIB, Suryapraba AAA, Subrata M, et al. Streptococcus suis-Associated Meningitis, Bali, Indonesia, 2014-2017. Emerg Infect Dis. 2019;25(12):2235-42.

Segura M, Fittipaldi N, Calzas C, Gottschalk M. Critical Streptococcus suis Virulence Factors: Are They All Really Critical? Trends Microbiol. 2017;25(7):585-99.

Goyette-Desjardins G, Auger JP, Xu J, Segura M, Gottschalk M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect. 2014;3(6):e45.

Waack U, Nicholson TL. Subinhibitory Concentrations of Amoxicillin, Lincomycin, and Oxytetracycline Commonly Used to Treat Swine Increase Streptococcus suis Biofilm Formation. Front Microbiol. 2018;9:2707.

Wang Y, Wang Y, Sun L, Grenier D, Yi L. Streptococcus suis biofilm: regulation, drug-resistance mechanisms, and disinfection strategies. Appl Microbiol Biotechnol. 2018;102(21):9121-9.

Hanke ML, Kielian T. Deciphering mechanisms of staphylococcal biofilm evasion of host immunity. Front Cell Infect Microbiol. 2012;2:62.

Yi L, Jin M, Li J, Grenier D, Wang Y. Antibiotic resistance related to biofilm formation in Streptococcus suis. Appl Microbiol Biotechnol. 2020;104(20):8649-60.

Hatt JK, Rather PN. Role of bacterial biofilms in urinary tract infections. Curr Top Microbiol Immunol. 2008;322:163-92.

Branda SS, Vik S, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends Microbiol. 2005;13(1):20-6.

Lasa I, Penades JR. Bap: a family of surface proteins involved in biofilm formation. Res Microbiol. 2006;157(2):99-107.

Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, et al. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci U S A. 2007;104(19):8113-8.

Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 2002;184(4):1140-54.

Lopez D, Vlamakis H, Kolter R. Biofilms. Cold Spring Harb Perspect Biol. 2010;2(7):a000398.

Bazire A, Shioya K, Soum-Soutera E, Bouffartigues E, Ryder C, Guentas-Dombrowsky L, et al. The sigma factor AlgU plays a key role in formation of robust biofilms by nonmucoid Pseudomonas aeruginosa. J Bacteriol. 2010;192(12):3001-10.

Choi KS, Veeraragouda Y, Cho KM, Lee SO, Jo GR, Cho K, et al. Effect of gacS and gacA mutations on colony architecture, surface motility, biofilm formation and chemical toxicity in Pseudomonas sp. KL28. J Microbiol. 2007;45(6):492-8.

Matsuyama BY, Krasteva PV, Baraquet C, Harwood CS, Sondermann H, Navarro MV. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2016;113(2):E209-18.

Polkade AV, Mantri SS, Patwekar UJ, Jangid K. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria. Front Microbiol. 2016;7:131.

Han X, Liu L, Fan G, Zhang Y, Xu D, Zuo J, et al. Riemerella anatipestifer lacks luxS, but can uptake exogenous autoinducer-2 to regulate biofilm formation. Res Microbiol. 2015;166(6):486-93.

Wang Y, Wang Y, Sun L, Grenier D, Yi L. The LuxS/AI-2 system of Streptococcus suis. Appl Microbiol Biotechnol. 2018;102(17):7231-8.

Tan KH, How KY, Tan JY, Yin WF, Chan KG. Cloning and Characterization of the Autoinducer Synthase Gene from Lipid-Degrading Bacterium Cedecea neteri. Front Microbiol. 2017;8:72.

Remy B, Plener L, Elias M, Daude D, Chabriere E. [Enzymes for disrupting bacterial communication, an alternative to antibiotics?]. Ann Pharm Fr. 2016;74(6):413-20.

Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR. Making 'sense' of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol. 2005;3(5):383-96.

Wang Y, Yi L, Zhang Z, Fan H, Cheng X, Lu C. Overexpression of luxS cannot increase autoinducer-2 production, only affect the growth and biofilm formation in Streptococcus suis. ScientificWorldJournal. 2013;2013:924276.

Merritt J, Qi F, Goodman SD, Anderson MH, Shi W. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun. 2003;71(4):1972-9.

Trappetti C, McAllister LJ, Chen A, Wang H, Paton AW, Oggioni MR, et al. Autoinducer 2 Signaling via the Phosphotransferase FruA Drives Galactose Utilization by Streptococcus pneumoniae, Resulting in Hypervirulence. mBio. 2017;8(1).

Yang Q, Defoirdt T. Quorum sensing positively regulates flagellar motility in pathogenic Vibrio harveyi. Environ Microbiol. 2015;17(4):960-8.

Malladi VL, Sobczak AJ, Meyer TM, Pei D, Wnuk SF. Inhibition of LuxS by S-ribosylhomocysteine analogues containing a [4-aza]ribose ring. Bioorg Med Chem. 2011;19(18):5507-19.

Han X, Lu C. Biological activity and identification of a peptide inhibitor of LuxS from Streptococcus suis serotype 2. FEMS Microbiol Lett. 2009;294(1):16-23.

Wang Y, Yi L, Zhang Z, Fan H, Cheng X, Lu C. Biofilm formation, host-cell adherence, and virulence genes regulation of Streptococcus suis in response to autoinducer-2 signaling. Curr Microbiol. 2014;68(5):575-80.

Published

2021-06-21

How to Cite

Pramitasuri, T. I. ., Tarini, N. M. A. ., Susilawathi, N. M. ., & Raka Sudewi, A. A. (2021). Biofilm forming potential of Streptococcus suis: focusing on luxs/ai-2-mediated quorum sensing system. Indonesian Archives of Biomedical Research, 1(1), 41–46. https://doi.org/10.55392/indarcbiores.v1i1.6