GLUT1: structure, function, and biomedical significances
DOI:
https://doi.org/10.55392/indarcbiores.v1i1.5Keywords:
GLUT1, cancers, metabolic diseases.Abstract
Background; Glucose is the main energy source for cells. To be utilized by cells, glucose enters the intracellular space facilitated by transporters. GLUT1 is one of the glucose transporters and is the most widely expressed by various tissues in the body. Not only that, cancer cells, which are known to have very high glucose requirements compared to healthy cells, have a high expression of GLUT1 as well.
Reviews; This paper reviews the structure, function, and biomedical importance of GLUT1 and specifically describes recent developments regarding GLUT1 inhibition as a novel therapeutic approach in both metabolic diseases and cancers.
Conclusion; Inhibition of GLUT1 has also been shown to increase cancer cells' sensitivity to chemotherapy agents such as cisplatin and adriamycin. GLUT1 inhibition also increases the sensitivity of cancer cells to radiotherapy.
Downloads
References
Scheepers A; Joost HG; Schürmann A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN J Parenter Enteral Nutr. (2004) 28(5): 364-71.
Zhao FQ; Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics. (2007) 8(2): 113-28.
Wood IS; Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr. (2003) 89(1) :3-9.
Calvo MB; Figueroa A; Pulido EG; Campelo RG; Aparicio LA. Potential role of sugar transporters in cancer and their relationship with anticancer therapy. Int J Endocrinol. (2010);2010:205357.
Augustin R. The protein family of glucose transport facilitators: It's not only about glucose after all. IUBMB Life. (2010) 62(5): 315-33.
Deng D; Yan N. GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Sci. (2016) 25(3): 546-58.
SLC2A1 solute carrier family 2 (facilitated glucose transporter), member 1 [Homo sapiens (human)]. Available from http://www.ncbi.nlm.nih.gov/gene/6513. [Accessed: 22 Februari 2015].
SLC2A1. Available from http://www.genenames.org/cgibin/gene_symbol_report?hgnc_id=11005. [Accessed: 22 Februari 2015].
GLUT1 (human). Available from http://www.phosphosite.org/proteinAction.do?id=13500&showAllSites=true. [Accessed: 22 Februari 2015].
P11166 - GTR1_HUMAN. Available from http://www.uniprot.org/uniprot/P11166. [Accessed: 22 Februari 2015].
Augustin R; Mayoux E. Mammalian sugar transporters, glucose homeostasis. Dr. Leszek Szablewski (Ed.). (2014). ISBN: 978-953-51-1618-9, InTech, DOI: 10.5772/583.
Carruthers A; DeZutter J; Ganguly A; Devaskar SU. Will the original glucose transporter isoform please stand up! Am J Physiol Endocrinol Metab. (2009) 297(4): E836-48.
Pascual JM; Wang D; Lecumberri B; Yang H; Mao X Yang R; De Vivo DC. GLUT1 deficiency and other glucose transporter diseases. Eur J Endocrinol. (2004) 150(5): 627-33.
De Giorgis V; Veggiotti P. GLUT1 deficiency syndrome 2013: current state of the art. Seizure. (2013) 22(10): 803-11.
OMIM 138140. Solute carrier family 2 (facilitated glucose transporter), member 1; SLC2A1. Available from: http://www.omim.org/entry/138140. [Accessed: 23 Februari 2015]
Klepper J; Scheffer H; Elsaid MF; Kamsteeg EJ; Leferink M; Ben-Omran T. Autosomal recessive inheritance of GLUT1 deficiency syndrome. Neuropediatrics. (2009) 40(5) :207-10.
Yustisia I. Bioinformatics analysis of glucose transporter protein 1 (GLUT1). (2013). [Unpublished article]
Stefanidis I; Kytoudis K; Papathanasiou AA; Zaragotas D; Melistas L; Kitsios GD; Yiannakouris N; Zintzaras E. XbaI GLUT1 gene polymorphism and the risk of type 2 diabetes with nephropathy. Dis Markers. (2009) 27(1): 29-35.
Stefanidis I; Tziastoudi M; Tsironi EE; Dardiotis E; Tachmitzi SV; Fotiadou A; Pissas G; Kytoudis K; Sounidaki M; Ampatzis G; Mertens PR; Liakopoulos V; Eleftheriadis T; Hadjigeorgiou GM; Santos M; Zintzaras E. The contribution of genetic variants of SLC2A1 gene in T2DM and T2DM-nephropathy: association study and meta-analysis. Ren Fail. (2018) 40(1): 561-576.
Heilig CW; Deb DK; Abdul A; Riaz H; James LR; Salameh J; Nahman NS Jr. GLUT1 regulation of the pro-sclerotic mediators of diabetic nephropathy. Am J Nephrol. (2013) 38(1): 39-49.
Lu L; Seidel CP; Iwase T; Stevens RK; Gong YY; Wang X; Hackett SF; Campochiaro PA. Suppression of GLUT1; a new strategy to prevent diabetic complications. J Cell Physiol. (2013) 228(2) :251-7.
You ZP; Zhang YL; Shi K; Shi L; Zhang YZ; Zhou Y; Wang CY. Suppression of diabetic retinopathy with GLUT1 siRNA. Sci Rep. (2017) 7(1): 7437.
Hu Y; Lou X; Wang R; Sun C; Liu X; Liu S; Wang Z; Ni C. Aspirin, a Potential GLUT1 Inhibitor in a Vascular Endothelial Cell Line. Open Med (Wars). (2019) 14: 552-560.
Macheda ML; Rogers S; Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. (2005) 202(3): 654-62.
Hsu PP; Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. (2008) 134(5): 703-7.
Kang SS; Chun YK; Hur MH; Lee HK; Kim YJ; Hong SR; Lee JH; Lee SG; Park YK. Clinical significance of glucose transporter 1 (GLUT1) expression in human breast carcinoma. Jpn J Cancer Res. (2002) 93(10): 1123-8.
Carvalho KC; Cunha IW; Rocha RM; Ayala FR; Cajaíba MM; Begnami MD; Vilela RS; Paiva GR; Andrade RG; Soares FA. GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics (Sao Paulo). (2011) 66(6): 965-72.
Krzeslak A; Wojcik-Krowiranda K; Forma E; Jozwiak P; Romanowicz H; Bienkiewicz A; Brys M. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers. Pathol Oncol Res. (2012) 18(3): 721-8.
Wanandi SI; Yustisia I; Neolaka GMG; Jusman SWA. Impact of extracellular alkalinization on the survival of human CD24-/CD44+ breast cancer stem cells associated with cellular metabolic shifts. Braz J Med Biol Res. (2017) 50(8):e6538.
Wu Q; Ba-Alawi W; Deblois G; Cruickshank J; Duan S; Lima-Fernandes E; Haight J; Tonekaboni SAM; Fortier AM; Kuasne H; McKee TD; Mahmoud H; Kushida M; Cameron S; Dogan-Artun N; Chen W; Nie Y; Zhang LX; Vellanki RN; Zhou S; Prinos P; Wouters BG; Dirks PB; Done SJ; Park M; Cescon DW; Haibe-Kains B; Lupien M; Arrowsmith CH. GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer. Nat Commun. (2020) 11(1): 4205.
Liu Y; Cao Y; Zhang W; Bergmeier S; Qian Y; Akbar H; Colvin R; Ding J; Tong L; Wu S; Hines J; Chen X. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. (2012) 11(8): 1672-82.
Peng Y; Xing SN; Tang HY; Wang CD; Yi FP; Liu GL; Wu XM. Influence of glucose transporter 1 activity inhibition on neuroblastoma in vitro. Gene. (2019) 689: 11-17.
Shin SJ; Kim JY; Kwon SY; Mun KC; Cho CH; Ha E. Ciglitazone enhances ovarian cancer cell death via inhibition of glucose transporter-1. Eur J Pharmacol. (2014) 743: 17-23.
Ding J; Gou Q; Jin J; Shi J; Liu Q; Hou Y. Metformin inhibits PPARδ agonist-mediated tumour growth by reducing Glut1 and SLC1A5 expressions of cancer cells. Eur J Pharmacol. (2019) 857: 172425.
Gwak H; Haegeman G; Tsang BK; Song YS. Cancer-specific interruption of glucose metabolism by resveratrol is mediated through inhibition of Akt/GLUT1 axis in ovarian cancer cells. Mol Carcinog. (2015) 54(12): 1529-40.
Noguchi C; Kamitori K; Hossain A; Hoshikawa H; Katagi A; Dong Y; Sui L; Tokuda M; Yamaguchi F. D-Allose Inhibits Cancer Cell Growth by Reducing GLUT1 Expression. Tohoku J Exp Med. (2016) 238(2): 131-41.
Wei R; Mao L; Xu P; Zheng X; Hackman RM; Mackenzie GG; Wang Y . Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models. Food Funct. (2018) 9(11): 5682-5696.
Liao H; Wang Z; Deng Z; Ren H; Li X. Curcumin inhibits lung cancer invasion and metastasis by attenuating GLUT1/MT1-MMP/MMP2 pathway. Int J Clin Exp Med. (2015) 8(6): 8948-57.
Wang YD; Li SJ; Liao JX. Inhibition of glucose transporter 1 (GLUT1) chemosensitized head and neck cancer cells to cisplatin. Technol Cancer Res Treat. (2013) 12(6): 525-35.
Sawayama H; Ogata Y; Ishimoto T; Mima K; Hiyoshi Y; Iwatsuki M; Baba Y; Miyamoto Y; Yoshida N; Baba H. Glucose transporter 1 regulates the proliferation and cisplatin sensitivity of esophageal cancer. Cancer Sci. (2019) 110(5): 1705-1714.
Chen Q; Meng YQ; Xu XF; Gu J. Blockade of GLUT1 by WZB117 resensitizes breast cancer cells to adriamycin. Anticancer Drugs. (2017) 28(8): 880-887.
Zhao F; Ming J; Zhou Y; Fan L. Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol. (2016) 77(5): 963-72.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Indonesian Archives of Biomedical Research

This work is licensed under a Creative Commons Attribution 4.0 International License.