The Role of artificial intelligence in designing antibody-based therapy for Covid-19
DOI:
https://doi.org/10.55392/indarcbiores.v1i1.4Keywords:
artificial intelligence, immunoinformatics, monoclonal antibody, antibody therapyAbstract
For several decades ago, passive immunization has already proven its ability to treat some diseases, especially pandemic diseases. On the contrary, after antibiotics discovery, the usage of passive immunization becomes neglected. Nowadays, we face a pandemic situation, COVID-19, which needs the possible treatment to save patients lives while medicines and vaccines are under development. By learning from history, passive immunization seems to be the best choice to save patient lives. As a kind of passive immunization, antibody-based therapy successfully treats diseases, including infectious diseases. Several antibody-based therapies are developed, as vast as the technology development, especially after the genetic codes announced. This article highlighted the influence of genomics tools, which helps researchers develop various platforms in developing monoclonal antibodies with high safety and efficiency in production and application.
Downloads
References
Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, et al. COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduction and Targeted Therapy [Internet]. 2020;5(1):1–8. Available from: http://dx.doi.org/10.1038/s41392-020-00243-2
AminJafari A, Ghasemi S. The possible of immunotherapy for COVID-19: A systematic review. International Immunopharmacology [Internet]. 2020;83(March):106455. Available from: https://doi.org/10.1016/j.intimp.2020.106455
Baxter D. Active and passive immunization for cancer. Human Vaccines and Immunotherapeutics. 2014;10(7):2123–9.
FDA. Investigational COVID-19 Convalescent Plasma. Guidance for Industry. Food and Drug Administration. 2020.
Eibl MM. History of Immunoglobulin Replacement. Immunology and Allergy Clinics of North America [Internet]. 2008;28(4):737–64. Available from: http://dx.doi.org/10.1016/j.iac.2008.06.004
Nevoltris D, Chames P. Antibody Engineering Methods and Protocols Third Edition Methods in Molecular Biology 1827 [Internet]. 2018. Available from: http://www.springer.com/series/7651
Alsoussi WB, Turner JS, Case JB, Zhao H, Schmitz AJ, Zhou JQ, et al. A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. The Journal of Immunology. 2020;205(4):915–22.
Hansen J, Baum A, Pascal KE, Russo V, Giordano S, Wloga E, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science. 2020;369(6506):1010–4.
Case JB, Rothlauf PW, Chen RE, Liu Z, Zhao H, Kim AS, et al. Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-COV-2 and A Clinical Isolate of SARS-COV-2. Cell Host & Microbe. 2020;28(September):475–85.
Chi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M, et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 2020;369(6504):650–5.
Custódio TF, Das H, Sheward DJ, Hanke L, Pazicky S, Pieprzyk J, et al. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nature Communications [Internet]. 2020;11(1). Available from: http://dx.doi.org/10.1038/s41467-020-19204-y
Dong J, Huang B, Jia Z, Wang B, Gallolu Kankanamalage S, Titong A, et al. Development of multi-specific humanized llama antibodies blocking SARS-CoV-2/ACE2 interaction with high affinity and avidity. Emerging Microbes and Infections. 2020;9(1):1034–6.
Ejemel M, Li Q, Hou S, Schiller ZA, Tree JA, Wallace A, et al. A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction. Nature Communications. 2020;11(1):1–9.
Fagre AC, Manhard J, Adams R, Eckley M, Zhan S, Lewis J, et al. A Potent SARS-CoV-2 Neutralizing Human Monoclonal Antibody That Reduces Viral Burden and Disease Severity in Syrian Hamsters. Frontiers in Immunology. 2020;11(December):1–13.
Hassan AO, Case JB, Winkler ES, Thackray LB, Kafai NM, Bailey AL, et al. A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell [Internet]. 2020;182(3):744-753.e4. Available from: http://dx.doi.org/10.1016/j.cell.2020.06.011
Huo J, Zhao Y, Ren J, Zhou D, Duyvesteyn HME, Ginn HM, et al. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. Cell Host and Microbe [Internet]. 2020;28(3):445-454.e6. Available from: https://doi.org/10.1016/j.chom.2020.06.010
Kim C, Ryu DK, Lee J, Kim Y il, Seo JM, Kim YG, et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nature Communications [Internet]. 2021;12(1):1–10. Available from: http://dx.doi.org/10.1038/s41467-020-20602-5
Kreye J, Reincke SM, Kornau HC, Sánchez-Sendin E, Corman VM, Liu H, et al. A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-19 Hamster Model. Cell. 2020;183(4):1058-1069.e19.
Li W, Chen C, Drelich A, Martinez DR, Gralinski LE, Suna Z, et al. Rapid identification of a human antibody with high prophylactic and therapeutic efficacy in three animal models of SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(47):29832–8.
Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature [Internet]. 2020;584(7821):450–6. Available from: http://dx.doi.org/10.1038/s41586-020-2571-7
Lv Z, Deng YQ, Ye Q, Cao L, Sun CY, Fan C, et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science. 2020;369(6509):1505–9.
Miao X, Luo Y, Huang X, Lee SMY, Yuan Z, Tang Y, et al. A novel biparatopic hybrid antibody-ACE2 fusion that blocks SARS-CoV-2 infection: implications for therapy. mAbs [Internet]. 2020;12(1). Available from: https://doi.org/10.1080/19420862.2020.1804241
Noy-Porat T, Makdasi E, Alcalay R, Mechaly A, Levy Y, Bercovich-Kinori A, et al. A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes. Nature Communications. 2020;11(1):1–7.
Parzych E, Weiner DB. Nucleic acid approaches to antibody-based therapeutics for COVID-19: A perspective. J allergy clin immunol. 2020;(January).
Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, et al. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell [Internet]. 2020;183(4):1024-1042.e21. Available from: https://doi.org/10.1016/j.cell.2020.09.037
Pinto D, Park Y, Beltramello M, Walls AC, Tortorici MA, Bianchi S, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature [Internet]. 2020;583(April). Available from: http://dx.doi.org/10.1038/s41586-020-2349-y
Premkumar L, Segovia-Chumbez B, Jadi R, Martinez DR, Raut R, Markmann AJ, et al. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Science Immunology. 2020;5(48):1–14.
Rattanapisit K, Shanmugaraj B, Manopwisedjaroen S, Purwono PB, Siriwattananon K, Khorattanakulchai N, et al. Rapid production of SARS-CoV-2 receptor binding domain (RBD) and spike specific monoclonal antibody CR3022 in Nicotiana benthamiana. Scientific Reports [Internet]. 2020;10(1):1–11. Available from: https://doi.org/10.1038/s41598-020-74904-1
Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He WT, et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science. 2020;369(6506):956–63.
Schäfer A, Muecksch F, Lorenzi JCC, Leist SR, Cipolla M, Bournazos S, et al. Antibody potency, effector function and combinations in protection from SARS-CoV-2 infection in vivo. bioRxiv. 2020;218(3).
Seydoux E, Homad LJ, MacCamy AJ, Parks KR, Hurlburt NK, Jennewein MF, et al. Analysis of a SARS-CoV-2-Infected Individual Reveals Development of Potent Neutralizing Antibodies with Limited Somatic Mutation. Immunity [Internet]. 2020;53(1):98-105.e5. Available from: https://doi.org/10.1016/j.immuni.2020.06.001
Shah M, Ahmad B, Choi S, Woo HG. Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs cross-neutralization. Computational and Structural Biotechnology Journal [Internet]. 2020;18:3402–14. Available from: https://doi.org/10.1016/j.csbj.2020.11.002
Shanmugaraj B, Siriwattananon K, Wangkanont K, Phoolcharoen W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). Asian Pacific Journal of Allergy and Immunology. 2020;38(1):10–8.
Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature [Internet]. 2020;584(7819):120–4. Available from: http://dx.doi.org/10.1038/s41586-020-2381-y
Sun Z, Chen C, Li W, Martinez DR, Drelich A, Baek DS, et al. Potent neutralization of SARS-CoV-2 by human antibody heavy-chain variable domains isolated from a large library with a new stable scaffold. mAbs [Internet]. 2020;12(1):1–6. Available from: https://doi.org/10.1080/19420862.2020.1778435
Tai W, Zhang X, He Y, Jiang S, Du L. Identification of SARS-CoV RBD-targeting monoclonal antibodies with cross-reactive or neutralizing activity against SARS-CoV-2. Antiviral Research [Internet]. 2020;179(April):104820. Available from: https://doi.org/10.1016/j.antiviral.2020.104820
Wan J, Xing S, Ding L, Wang Y, Gu C, Wu Y, et al. Human-IgG-Neutralizing Monoclonal Antibodies Block the SARS-CoV-2 Infection. Cell Reports [Internet]. 2020;32(3):107918. Available from: https://doi.org/10.1016/j.celrep.2020.107918
Wang S, Peng Y, Wang R, Jiao S, Wang M, Huang W, et al. Characterization of neutralizing antibody with prophylactic and therapeutic efficacy against SARS-CoV-2 in rhesus monkeys. Nature Communications [Internet]. 2020;11(1):1–8. Available from: http://dx.doi.org/10.1038/s41467-020-19568-1
Wu Y, Wang F, Shen C, Peng W, Li D, Zhao C, et al. A non-competing pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. medRxiv. 2020;1278(June):1274–8.
Zhang C, Wang Y, Zhu Y, Liu C, Gu C, Xu S, et al. Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections. Nature Communications. 2021;12(1):1–16.
Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Nkolola JP, et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature [Internet]. 2020;584(7821):443–9. Available from: http://dx.doi.org/10.1038/s41586-020-2548-6
Zost SJ, Gilchuk P, Chen RE, Case JB, Reidy JX, Trivette A, et al. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nature Medicine [Internet]. 2020;26(9):1422–7. Available from: http://dx.doi.org/10.1038/s41591-020-0998-x
Zylberman V, Sanguineti S, Pontoriero A v., Higa S v., Cerutti ML, Seijo SMM, et al. Development of a hyperimmune equine serum therapy for covid-19 in Argentina. Medicina. 2020;80:1–6.
Casadevall A, Scharff MD. Return to the Past: The Case for Antibody-Based Therapies in Infectious Diseases. Clinical Infectious Diseases [Internet]. 1995 Jul 1;21(1):150–61. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1093/clinids/21.1.150
Sepulveda J, Shoemaker CB. Design and testing of PCR primers for the contruction of scFv libraries representing the immunoglobulin repertoire of rats. j Immunol Methods. 2008;20(1–2):92–102.
Chen Q, Qiu S, Li H, Lin C, Luo Y, Ren W, et al. A novel approach for rapid high-throughput selection of recombinant functional rat monoclonal antibodies. BMC Immunology. 2018;19(1):1–11.
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, et al. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics - Clinical Applications. 2016;10(9–10):922–48.
Wu AM, Yazaki PJ. Designer genes: Recombinant antibodu fragments for biological imaging. J Nucl Med. 1999; 43:268–83.
Garraud O, Heshmati F, Pozzetto B, Lefrere F, Girot R, Saillol A, et al. Plasma therapy against infectious pathogens, as of yesterday, today and tomorrow. Transfusion Clinique et Biologique [Internet]. 2016;23(1):39–44. Available from: http://dx.doi.org/10.1016/j.tracli.2015.12.003
Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients with Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA - Journal of the American Medical Association. 2020;324(5):460–70.
Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 Critically Ill Patients with COVID-19 with Convalescent Plasma. JAMA - Journal of the American Medical Association. 2020;323(16):1582–9.
Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(17):9490–6.
Zeng QL, Yu ZJ, Gou JJ, Li GM, Ma SH, Zhang GF, et al. Effect of Convalescent Plasma Therapy on Viral Shedding and Survival in Patients with Coronavirus Disease 2019. Journal of Infectious Diseases. 2020;222(1):38–43.
Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, et al. Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science. 2020;27(1):1–30.
Liu S, Wang S, Lu S. DNA immunization as a technology platform for monoclonal antibody induction. Emerging Microbes and Infections [Internet]. 2016;5(4):e33-6. Available from: http://dx.doi.org/10.1038/emi.2016.27
Shim BS, Park SM, Quan JS, Jere D, Chu H, Song MK, et al. Intranasal immunization with plasmid DNA encoding spike protein of SARS-coronavirus/polyethylenimine nanoparticles elicits antigen-specific humoral and cellular immune responses. BMC Immunology. 2010;11.
Khan AM, Hu Y, Miotto O, Thevasagayam NM, Sukumaran R, Abd Raman HS, et al. Analysis of viral diversity for vaccine target discovery. BMC Medical Genomics. 2017;10(Suppl 4):1–15.
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature [Internet]. 2020;581(7807):215–20. Available from: http://dx.doi.org/10.1038/s41586-020-2180-5
Hasöksüz M, Kiliç S, Saraç F. Coronaviruses and SARS-COV-2. Turkish Journal of Medical Sciences. 2020;50:549–56.
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, et al. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics - Clinical Applications. 2016;10(9–10):922–48.
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, et al. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics - Clinical Applications. 2016;10(9–10):922–48.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Indonesian Archives of Biomedical Research

This work is licensed under a Creative Commons Attribution 4.0 International License.









