Sulforaphane as a potential therapy for multiple sclerosis: a review article
DOI:
https://doi.org/10.55392/indarcbiores.v1i2.24Keywords:
Sulforaphane, Multiple Sclerosis, Nrf2, Oxidative StressAbstract
Multiple Sclerosis (MS) is a chronic immune-mediated Neuroinflammatory disease that attacks the Central Nervous System (CNS). It creates serious physical disabilities characterized by neuronal injury, demyelination, and axonal loss. Several mechanisms are responsible for the progression of MS, including the infiltration of T-cells from the peripheral to the CNS, the autoreactivity of B-cells that contribute to abnormal regulation of antibodies and antigen presentation, and the assault of Macrophage that lead to inflammation and neuron damage. Additionally, oxidative stress plays a more important role in chronic inflammation of MS. Sulforaphane (SFN) is an isothiocyanate derived from glucoraphanin (GRA) that is found mostly in broccoli. SFN can act as an anti-inflammatory and anti-oxidant agent by activating the Nuclear factor-erythroid 2-(NF-E2-) Related Factor 2 (Nrf2). Nrf2 is expressed in the central nervous system and upregulated in response to inflammation and cerebral insults. Nrf2 binds to the antioxidant response element (ARE) which is a DNA promoter region of genes codifying antioxidant enzymes, which in turn can reduce oxidative stress. Several in vitro and in vivo studies show that SFN can increase the anti-inflammatory and anti-oxidant genes. Thus, SFN is very promising as a potential therapy for MS.
Downloads
References
Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, et al. Atlas of multiple sclerosis 2013: A growing global problem with widespread inequity. Neurology. 2014; 83: 1022-24. doi: 10.1212/wnl.0000000000000768.
Eskandarieh S, Heydarpour P, Minagar A, Pourmand S, and Sahraian MA. Multiple sclerosis epidemiology in east asia, south east asia and south asia: A systematic review. Neuroepidemiology. 2016; 46: 209-21. doi: 10.1159/000444019.
Lassmann H, van Horssen J, and Mahad D. Progressive multiple sclerosis: Pathology and pathogenesis. Nature Reviews Neurology. 2012; 8: 647-56. doi: 10.1038/nrneurol.2012.168.
Bjartmar C and Trapp BD. Axonal degeneration and progressive neurologic disability in multiple sclerosis. Neurotoxicity Research. 2003; 5: 157-64. doi: 10.1007/BF03033380.
Arnold P, Mojumder D, Detoledo J, Lucius R, and Wilms H. Pathophysiological processes in multiple sclerosis: Focus on nuclear factor erythroid-2-related factor 2 and emerging pathways. Clin Pharmacol. 2014; 6: 35-42. doi: 10.2147/CPAA.S35033.
Farber RS, Harel A, and Lublin F. Novel agents for relapsing forms of multiple sclerosis. Annual Review of Medicine. 2016; 67: 309-21. doi: 10.1146/annurev-med-052814-023415.
Dendrou CA, Fugger L, and Friese MA. Immunopathology of multiple sclerosis. Nature Reviews Immunology. 2015; 15: 545. doi: 10.1038/nri3871.
Abraira V, Alvarez-Cermeño JC, Arroyo R, Cámara C, Casanova B, Cubillo S, et al. Utility of oligoclonal igg band detection for ms diagnosis in daily clinical practice. Journal of Immunological Methods. 2011; 371: 170-73. doi: 10.1016/j.jim.2011.06.009.
Barnett MH, Henderson AP, and Prineas JW. The macrophage in ms: Just a scavenger after all? Pathology and pathogenesis of the acute ms lesion. Multiple Sclerosis Journal. 2006; 12: 121-32. doi: 10.1191/135248506ms1304rr.
Hayes JD and McMahon M. Nrf2 and keap1 mutations: Permanent activation of an adaptive response in cancer. Trends in Biochemical Sciences. 2009; 34: 176-88. doi: 10.1016/j.tibs.2008.12.008.
Yong H, Chartier G, and Quandt J. Modulating inflammation and neuroprotection in multiple sclerosis. Journal of Neuroscience Research. 2018; 96: 927-50. doi: 10.1002/jnr.24090.
Zolnourian A, Galea I, and Bulters D. Neuroprotective role of the nrf2 pathway in subarachnoid haemorrhage and its therapeutic potential. Oxid Med Cell Longev. 2019; 2019: 6218239. doi: 10.1155/2019/6218239.
Dinkova-Kostova AT, Fahey JW, Kostov RV, and Kensler TW. Keap1 and done? Targeting the nrf2 pathway with sulforaphane. Trends Food Sci Technol. 2017; 69: 257-69. doi: 10.1016/j.tifs.2017.02.002.
Conzatti A, Froes FC, Schweigert Perry ID, and Souza CG. Clinical and molecular evidence of the consumption of broccoli, glucoraphanin and sulforaphane in humans. Nutr Hosp. 2014; 31: 559-69. doi: 10.3305/nh.2015.31.2.7685.
Sandberg M, Patil J, D'Angelo B, Weber SG, and Mallard C. Nrf2-regulation in brain health and disease: Implication of cerebral inflammation. Neuropharmacology. 2014; 79: 298-306. doi: 10.1016/j.neuropharm.2013.11.004.
Kensler TW, Egner PA, Agyeman AS, Visvanathan K, Groopman JD, Chen JG, et al. Keap1-nrf2 signaling: A target for cancer prevention by sulforaphane. Top Curr Chem. 2013; 329: 163-77. doi: 10.1007/128_2012_339.
Vomhof-Dekrey EE and Picklo MJ, Sr. The nrf2-antioxidant response element pathway: A target for regulating energy metabolism. J Nutr Biochem. 2012; 23: 1201-6. doi: 10.1016/j.jnutbio.2012.03.005.
Evans PC. The influence of sulforaphane on vascular health and its relevance to nutritional approaches to prevent cardiovascular disease. EPMA J. 2011; 2: 9-14. doi: 10.1007/s13167-011-0064-3.
Turpaev KT. Keap1-nrf2 signaling pathway: Mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles. Biochemistry (Mosc). 2013; 78: 111-26. doi: 10.1134/S0006297913020016.
Tarozzi A, Angeloni C, Malaguti M, Morroni F, Hrelia S, and Hrelia P. Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxid Med Cell Longev. 2013; 2013: 415078. doi: 10.1155/2013/415078.
Guerrero-Beltran CE, Calderon-Oliver M, Pedraza-Chaverri J, and Chirino YI. Protective effect of sulforaphane against oxidative stress: Recent advances. Exp Toxicol Pathol. 2012; 64: 503-8. doi: 10.1016/j.etp.2010.11.005.
Egner PA, Chen JG, Wang JB, Wu Y, Sun Y, Lu JH, et al. Bioavailability of sulforaphane from two broccoli sprout beverages: Results of a short-term, cross-over clinical trial in qidong, china. Cancer Prev Res (Phila). 2011; 4: 384-95. doi: 10.1158/1940-6207.CAPR-10-0296.
Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernandez-Ruiz J, and Cuadrado A. Pharmacological targeting of the transcription factor nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid Redox Signal. 2011; 14: 2347-60. doi: 10.1089/ars.2010.3731.
Zhao XD, Zhou YT, and Lu XJ. Sulforaphane enhances the activity of the nrf2-are pathway and attenuates inflammation in oxyhb-induced rat vascular smooth muscle cells. Inflamm Res. 2013; 62: 857-63. doi: 10.1007/s00011-013-0641-0.
Chen G, Fang Q, Zhang J, Zhou D, and Wang Z. Role of the nrf2-are pathway in early brain injury after experimental subarachnoid hemorrhage. J Neurosci Res. 2011; 89: 515-23. doi: 10.1002/jnr.22577.
Zhao X, Wen L, Dong M, and Lu X. Sulforaphane activates the cerebral vascular nrf2-are pathway and suppresses inflammation to attenuate cerebral vasospasm in rat with subarachnoid hemorrhage. Brain Res. 2016; 1653: 1-7. doi: 10.1016/j.brainres.2016.09.035.
Lassmann H and van Horssen J. Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim Biophys Acta. 2016; 1862: 506-10. doi: 10.1016/j.bbadis.2015.09.018.
Ohl K, Tenbrock K, and Kipp M. Oxidative stress in multiple sclerosis: Central and peripheral mode of action. Exp Neurol. 2016; 277: 58-67. doi: 10.1016/j.expneurol.2015.11.010.
Haider L, Fischer MT, Frischer JM, Bauer J, Hoftberger R, Botond G, et al. Oxidative damage in multiple sclerosis lesions. Brain. 2011; 134: 1914-24. doi: 10.1093/brain/awr128.
Geisel J, Bruck J, Glocova I, Dengler K, Sinnberg T, Rothfuss O, et al. Sulforaphane protects from t cell-mediated autoimmune disease by inhibition of il-23 and il-12 in dendritic cells. J Immunol. 2014; 192: 3530-9. doi: 10.4049/jimmunol.1300556.
Li B, Cui W, Liu J, Li R, Liu Q, Xie XH, et al. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and th17-related inflammation in mice. Exp Neurol. 2013; 250: 239-49. doi: 10.1016/j.expneurol.2013.10.002.
Galea I, Copple IM, Howat DW, and Franklin S. Sfx-01 reduces residual disability after experimental autoimmune encephalomyelitis. Mult Scler Relat Disord. 2019; 30: 257-61. doi: 10.1016/j.msard.2019.02.027.
Yoo IH, Kim MJ, Kim J, Sung JJ, Park ST, and Ahn SW. The anti-inflammatory effect of sulforaphane in mice with experimental autoimmune encephalomyelitis. J Korean Med Sci. 2019; 34: e197. doi: 10.3346/jkms.2019.34.e197.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Indonesian Archives of Biomedical Research

This work is licensed under a Creative Commons Attribution 4.0 International License.